

HighGo Postgres Server (HG-PGSQL)
User Guide

Version 1.1

December, 2019

HighGo Software Inc. ™
10318 Whalley Blvd #1 Surrey, BC, V3T 4H4, Canada
T: +1 (604) 781-6749 E: contact@highgo.ca W: www.highgo.ca

mailto:contact@highgo.ca
http://www.highgo.ca/

CHANGE LOG

Date Version Author Description
Nov, 22, 2019 v1.0 Beta C.Huang Initial Version

Dec, 30, 2019 v1.1 C.Huang Official Release Version

Table of Contents

1 INTRODUCTION ... 4

1.1 WHAT’S NEW... 4
1.2 TYPOGRAPHICAL CONVENTIONS .. 4

2 PRODUCT INSTALLATION .. 6

2.1 END USER LICENSE AGREEMENT ... 6
2.2 SUPPORTED PLATFORMS .. 6
2.3 INSTALLATION PREREQUISITE .. 6
2.4 DETAILED INSTALLATION AND QUICK START GUIDE .. 6

3 PARTITION SYNTAX ENHANCEMENT ... 6

3.1 OVERVIEW ... 7
3.2 PARTITION BY RANGE .. 8
3.3 PARTITION BY LIST .. 9
3.4 PARTITION BY HASH .. 9
3.5 SUB PARTITION .. 10
3.6 PARTITION CONSTRAINT .. 11

4 SHARD MANAGEMENT .. 14

4.1 OVERVIEW ... 14
4.2 SYNTAX AND PLACEMENT OF WITH PUSHDOWN CLAUSE .. 14

4.2.1 Foreign Table Creation .. 14
4.2.2 Foreign Partition Table Creation using Enhance Partition Syntax.. 15
4.2.3 Foreign Sub-Partition Creation using Enhanced Partition Syntax .. 15

4.3 SYNTAX AND PLACEMENT OF INCLUDE REMOTE CLAUSE ... 16
4.3.1 Foreign Table Deletion ... 16
4.3.2 Foreign Partition Table Deletion ... 16
4.3.3 Foreign Table Deletion with CASCADE clause ... 16

4.4 CREATE FOREIGN SERVER OBJECTS ON LOCAL DATABASE SERVER ... 17
4.5 AUTOMATIC FOREIGN TABLE CREATION AND DELETION EXAMPLE .. 18
4.6 AUTOMATIC FOREIGN PARTITION TABLE CREATION AND DELETION EXAMPLE 19
4.7 AUTOMATIC FOREIGN SUB-PARTITION TABLE CREATION AND DELETION EXAMPLE 20
4.8 COMMON MISUSE AND MISINTERPRETATION .. 21

4.8.1 Table and Partition Constraints are not Affected by ‘WITH PUSHDOWN’ 21
4.8.2 ‘WITH PUSHDOWN’ cannot be Used on Temporary Tables .. 21
4.8.3 ‘WITH PUSHDOWN’ Returns Error if Foreign Table Exists Already ... 22
4.8.4 The Parent Partition and Sub-Partition Tables cannot be Foreign at the Same Time 22

5 PARALLEL BACKUP .. 24

5.1 AUTHENTICATION AND CONNECTION LIMIT CONFIGURATION ... 24
5.1.1 Set Proper max_wal_sender Parameter ... 24
5.1.2 Set Proper Replication Connection Permission .. 25

5.2 PARALLEL BACKUP USAGES .. 25

1 Introduction

1.1 What’s New

HG-PGSQL is built on top of already feature-rich PostgreSQL 12.1 and provides additional useful features
as follows:

• Enhanced Partition Creation Syntax

• Shard Management

• Parallel Backup

1.2 Typographical Conventions

Certain typographical conventions are used in this document to distinguish various commands,
statements, programs, examples ...etc. This section provides a summary of these conventions.

Italic font Italic is used in sentences that required extra attention.
Normally used in “Warning” or “Important” sections

Fixed-width font This font is used on user commands, inputs, SQL column
names, programming keywords ...etc.

For example:
SELECT pg_reload_conf();

Italic fixed-width font This font is used on terms in which the user must

substitute a value in actual usage:

For example:
DELETE FROM table_name;

Dollar sign - $ Dollar sign represents the start of a user or SQL
commands, that the user can issue on a command line
terminal. The dollar sign is commonly used with fixed-
width font

For example:
$ SELECT * from test_table;

Vertical pipe - | Vertical pipe denotes a choice between the terms on
either side of the pipe. It is commonly used with square
brackets or braces to separate two or more alternatives
choices.

Square brackets - [] Square brackets denote that one or none of the enclosed
terms may be substituted. Normally a vertical pipe is
used within the square brackets to denote choices.

For example:
[a | b] means to choose one of “a” or “b” or none at all.

Braces - { } Braces denote that exactly one of the enclosed terms
must be specified. Normally a vertical pipe is used within

the braces to denote choices.

For example:
{ a | b | c } means exactly “a”, “b” or “c” must be
specified.

Ellipses - ... Ellipses denote that the preceding terms may be
repeated. Normally a vertical pipe is used together to
denote choices.

For example:
[a | b] ... means that you may have the sequence, “a a a
b b”.

2 Product Installation

2.1 End User License Agreement

Make sure you have read and agreed to the End User License Agreement (EULA) from the link below
before installing and using HighGo Postgres Server.

https://yum.highgo.ca/#license

2.2 Supported Platforms

HighGo Postgres Server installation is supported on the following platforms

• CentOS (X86_64) 6.x

• CentOS (X86_64) 7.x

2.3 Installation Prerequisite

Prior to installing HG-PGSQL and its supporting components, you will need to install the HighGo yum
repository entry on your system so that the yum utility is able to download the desired HG-PGSQL
packages

$ yum -y install https://yum.highgo.ca/dists/rpms/repo/highgo-

release-1.0-2.noarch.rpm

Upon successful installation, a new HighGo yum repository entry will be created at:

/etc/yum.repos.d/highgo.repo

And make sure the GPG key for HighGo is also created at:

/etc/pki/rpm-gpg/HIGHGO-SOFTWARE-GPG-KEY

Alternatively, you may also follow the link below to download the HG-PGSQL RPM packages from
Highgo.ca for local installation.

https://yum.highgo.ca/

2.4 Detailed Installation and Quick Start Guide

The detailed installation and quick start guide for HG-PGSQL product can be found at the highgo.ca
product page or visit the link below:

https://www.highgo.ca/products/highgo-postgresql-server

https://yum.highgo.ca/#license
https://yum.highgo.ca/dists/rpms/repo/highgo-release-1.0-2.noarch.rpm
https://yum.highgo.ca/dists/rpms/repo/highgo-release-1.0-2.noarch.rpm
https://yum.highgo.ca/
https://www.highgo.ca/products/highgo-postgresql-server
https://www.highgo.ca/products/highgo-postgresql-server

3 Partition Syntax Enhancement

3.1 Overview

HG-PGSQL greatly simplifies the table partition creation syntax by allowing the user to create partitioned
table along with its partitions and sub-partitions in one consolidated SQL statement.

Partition syntax enhancement is particularly useful in a real-world scenario where a user is required to
create a complex partitioned table structure. This feature greatly reduces the syntax complexity and
reduce the number of SQL statement, therefore reducing the possibility of error.

The new table partition syntax follows this general rule below and please note that this rule contains
every possible usage in one large syntax. We will break down each usage in the sections that follow.

CREATE TABLE table_name (column_name TYPE column_constraint)

PARTITION BY { RANGE | LIST | HASH } (column_name)

(

 /* Partition by Range */

PARTITION partition_name FOR VALUES FROM (lower_bound) TO (upper_bound),

/* Partition by Hash */

PARTITION partition_name FOR VALUES WITH (hash_partition_definition),

/* Partition by List */

PARTITION partition_name FOR VALUES IN (list_partition_definition),

/* Default Partition */

 PARTITION partition_name DEFAULT,

/* Default Partition with Constraint */

PARTITION partition_name (CONSTRAINT constrain_name partition_constraint)

 DEFAULT,

 /* Sub Partition Extended from Partition by Range */

 PARTITION partition_name FOR VALUES FROM (lower_bound) TO (upper_bound)

PARTITION BY { RANGE | LIST | HASH }(column_name)

(

 /* Sub Partition by Range

 PARTITION sub_partition_name FOR VALUES FROM (lower_bound) TO

 (upper_bound),

 /* Sub Partition by List

 PARTITION sub_partition_name FOR VALUES IN (list_partition_definition),

 /* Sub Partition by Hash

 PARTITION sub_partition_name FOR VALUES WITH (hash_partition_definition)

 /* more sub partitions follow ...*/

)

 /* more partition definitions follow ...*/

);

Let’s examine the new syntax in more detail:

• First, the user defines a table and list of columns using the CREATE TABLE clause following the
standard PostgreSQL syntax. Refer to the following link for more detailed information on the
CREATE TABLE clause.

http://www.postgresqltutorial.com/postgresql-create-table/

• Next, the user defines the new table as partitioned table using clause PARTITION BY { RANGE |
LIST | HASH } (column_name)and selects the column name that will be used to partition the
data entries. The PARTITION BY clause also follows the standard PostgreSQL syntax and
partition type can be one of the following: RANGE, LIST or HASH. Please refers to the following
for more detailed information of PARTITION BY clause.

https://www.postgresql.org/docs/current/ddl-partitioning.html

• Then, the new syntax unique to HG-PGSQL follows. The user can optionally specifies a number
of partition definitions using one or more PARTITION partition_name clauses enclosed in a
bracket () and placed after the (column_name). Each line of PARTITION partition_name
clause is separated by comma and depending on the partition type (range, list or hash),
different clauses are used to specify the boundary condition for partitions.

o For PARTITION BY RANGE, the user will use FOR VALUES FROM (lower_bound) TO
(upper_bound) to define a value range.

o For PARTITION BY LIST, the user will use FOR VALUES IN
(list_partition_definition) to define a list of values.

o For PARTITION BY HASH, the user will use FOR VALUES WITH
(hash_partition_definition) to define a hash condition.

o For default partition type, the user will simply use the DEFAULT clause as partition
condition

o The clauses defining the range, list and hash definitions also follow the standard
PostgreSQL syntax and details can be found in the above link.

• Constraints can be specified with “CONSTRAINT constraint_name partition_constraint”
clause enclosed in brackets () and placed right after “PARTITION partition_name” clause. The
values for partition_constraint follows the standard PostgreSQL syntax involving clauses
such as UNIQUE, CHECK, and PRIMARY KEY …etc. Constraint details can be found here:

https://www.tutorialspoint.com/postgresql/postgresql_constraints.htm

• Sub partitions can be specified by placing another “PARTITION BY { RANGE | LIST |
HASH }(column_name)” clause at the end of partition definition, following a bracket ()
containing additional partition boundary conditions using the same PARTITION
sub_partition_name clauses separated by comma.

3.2 Partition by Range

Using standard PostgreSQL syntax, to create a partitioned table with 3 partition definitions, a user is
required to execute at least 4 SQL statements as illustrated below.

$ CREATE TABLE prt_com1 (a INT) PARTITION BY RANGE (a);

CREATE TABLE

$ CREATE TABLE prt_com1_p1 PARTITION OF prt_com1 FOR VALUES FROM (1) TO (10);

CREATE TABLE

$ CREATE TABLE prt_com1_p2 PARTITION OF prt_com1 FOR VALUES FROM (10) TO (20);

CREATE TABLE

$ CREATE TABLE prt_com1_p3 PARTITION OF prt_com1 DEFAULT;

http://www.postgresqltutorial.com/postgresql-create-table/
https://www.postgresql.org/docs/current/ddl-partitioning.html
https://www.tutorialspoint.com/postgresql/postgresql_constraints.htm

CREATE TABLE

With HG-PGSQL partition syntax enhancement, partition by range creation can be shortened with this
general rule:

$ CREATE TABLE table_name (column_name TYPE) PARTITION BY RANGE (column_name)

 (

 PARTITION partition_name_1 FOR VALUES FROM (lower_bound) TO (upper_bound),

 PARTITION partition_name_2 FOR VALUES FROM (lower_bound) TO (upper_bound),

 PARTITION partition_name_3 DEFAULT

 /* more partition definitions follow ...*/

);

For example:

$ CREATE TABLE prt_com1 (a INT) PARTITION BY RANGE (a)

 (

 PARTITION prt_com1_p1 FOR VALUES FROM (1) TO (10),

 PARTITION prt_com1_p2 FOR VALUES FROM (10) TO (20),

 PARTITION prt_com1_p3 DEFAULT

);

CREATE TABLE

3.3 Partition by List

Partition by List can be defined using the following general rule.

$ CREATE TABLE table_name (column_name TYPE) PARTITION BY LIST (column_name)

 (

 PARTITION partition_name_1 FOR VALUES IN (list_partition_definition),

 PARTITION partition_name_2 FOR VALUES IN (list_partition_definition),

 PARTITION partition_name_3 DEFAULT

 /* more partition definitions follow */

);

For example:

$ CREATE TABLE prt_com2 (a INT) PARTITION BY LIST (a)

 (

 PARTITION prt_com2_p1 FOR VALUES IN (1, 3, 5 ,7 ,9),

 PARTITION prt_com2_p2 FOR VALUES IN (2, 4, 6, 8,10),

 PARTITION prt_com2_p3 DEFAULT

);

CREATE TABLE

3.4 Partition by Hash

Partition by Hash can be defined using the following general rule.

$ CREATE TABLE table_name (column_name TYPE) PARTITION BY HASH (column_name)

 (

 PARTITION partition_name_1 FOR VALUES WITH (hash_partition_definition),

 PARTITION partition_name_2 FOR VALUES WITH (hash_partition_definition)

 /* more partition definitions follow */

);

For example:

$ CREATE TABLE prt_com3 (a INT) PARTITION BY HASH (a)

 (

 PARTITION prt_com3_p1 FOR VALUES WITH (MODULUS 3, REMAINDER 0),

 PARTITION prt_com3_p2 FOR VALUES WITH (MODULUS 3, REMAINDER 1),

 PARTITION prt_com3_p3 FOR VALUES WITH (MODULUS 3, REMAINDER 2)

);

CREATE TABLE

3.5 Sub Partition

Sub-partitioning is an act of dividing a partition further into more partitions and it can be declared by
placing another block of PARTITION BY [RANGE | LIST | HASH] clause right after a partition
definition.

The following general rule illustrates the syntax to define a partition by range, and then sub-partition it
with range, list and hash partitions. The partition type does not limit the ability to create sub-partitions
and you may define a partition by list or hash and then sub-partition it with another range, list and hash
partitions. It is also possible to divide a sub-partition further by placing another block of PARTITION BY
[RANGE | LIST | HASH] clause right after a sub-partition definition.

$ CREATE TABLE table_name (column_name TYPE) PARTITION BY RANGE (column_name)

 (

 PARTITION partition_name_1 FOR VALUES FROM (lower_bound) TO (upper_bound)

 PARTITION BY RANGE(column_name)

 (

 /* Sub-Partition by RANGE */
 PARTITION sub_partition_name_1 FOR VALUES FROM (lower_bound) TO

 (upper_bound),

 PARTITION sub_partition_name_2 FOR VALUES FROM (lower_bound) TO

 (upper_bound),

 PARTITION sub_partition_name_3 DEFAULT

 /* more sub partition definitions follow ...*/

),

 PARTITION partition_name_2 FOR VALUES FROM (lower_bound) TO (upper_bound)

 PARTITION BY LIST(column_name)

 (

 /* Sub-Partition by LIST */
 PARTITION sub_partition_name_4 FOR VALUES IN

 (list_partition_definition),

 PARTITION sub_partition_name_5 FOR VALUES IN

 (list_partition_definition),

 PARTITION sub_partition_name_6 DEFAULT

 /* more sub partition definitions follow ...*/

),

 PARTITION partition_name_3 FOR VALUES FROM (lower_bound) TO (upper_bound)

 PARTITION BY HASH(column_name)

 (

 /* Sub-Partition by HASH */

 PARTITION sub_partition_name_7 FOR VALUES WITH

 (hash_partition_definition),

 PARTITION sub_partition_name_8 FOR VALUES WITH

 (hash_partition_definition)

 /* more sub partition definitions follow ...*/

),

 PARTITION partition_name_10 DEFAULT

 /* more partition definitions follow ...*/

);

For example:

$ CREATE TABLE prt_com4(a int, b int, c int)

PARTITION BY RANGE(a)

(

 PARTITION prt_com4_p1 FOR VALUES FROM (0) TO (100)

 PARTITION BY RANGE(a)

 (

 PARTITION prt_com4_p1_1 FOR VALUES FROM (0) TO (10),

 PARTITION prt_com4_p1_2 FOR VALUES FROM (10) TO (20),

 PARTITION prt_com4_p1_3 DEFAULT

),

 PARTITION prt_com4_p2 FOR VALUES FROM (100) TO (200)

 PARTITION BY LIST(b)

 (

 PARTITION prt_com4_p2_1 FOR VALUES IN (1,2,3,4),

 PARTITION prt_com4_p2_2 FOR VALUES IN (5,6,7,8),

 PARTITION prt_com4_p2_3 DEFAULT

),

 PARTITION prt_com4_p3 DEFAULT

 PARTITION BY HASH(c)

 (

 PARTITION prt_com4_p3_1 FOR VALUES WITH(MODULUS 3, REMAINDER 0),

 PARTITION prt_com4_p3_2 FOR VALUES WITH(MODULUS 3, REMAINDER 1),

 PARTITION prt_com4_p3_3 FOR VALUES WITH(MODULUS 3, REMAINDER 2)

)

);

CREATE TABLE

Defining all the partitions and sub-partitions in one SQL statement may introduce a very large and
lengthy statement, but with proper indentation and style, user is able to better visualize the hierarchical
relationship between the partitions, sub-partitions and their respective conditions. This, in fact, reduces
the possibility of human errors in comparison to the original statement by statement partition creation
syntax.

3.6 Partition Constraint

Constraints are the rules enforced on data columns on a table or a partition. These are used to prevent
invalid data from entering into the database.

Constraints can be specified on a partition with the new syntax by enclosing them in brackets after the
partition name declaration. The partition constraint can be defined following this general rule below and
please note that the rule uses partition by range as example. The same rule applies to other types of
partitions.

$ CREATE TABLE table_name (column_name TYPE) PARTITION BY RANGE (column_name)

(

PARTITION partition_name_1 (CONSTRAINT constrain_name partition_constraint)

 FOR VALUES FROM (lower_bound) TO (upper_bound),

PARTITION partition_name_2 (CONSTRAINT constrain_name partition_constraint)

 FOR VALUES FROM (lower_bound) TO (upper_bound),

PARTITION partition_name_3 (CONSTRAINT constrain_name partition_constraint)

 DEFAULT

/* more partition definitions follow */

);

Please note that partition_constraint can be defined according to standard PostgreSQL syntax
involving common clauses such as “NOT NULL”, “UNIQUE”, “CHECK”…etc. Visit below for more
information regarding constraint definition.

https://www.tutorialspoint.com/postgresql/postgresql_constraints.htm

The constraints are only created at the local server and not in the foreign
server.

Consider the example below that includes partition constrains using different clauses while
incorporating the new sub partition creation syntax.

$ CREATE TABLE f_prt_com5

(

 a int DEFAULT 10,

b int,

 c VARCHAR NOT NULL DEFAULT ‘def val parent’

)

PARTITION BY RANGE(a)

(

 PARTITION f_prt_com5_p1 (CONSTRAINT con_f_prt_com5_p1 CHECK (a != 19))

 FOR VALUES FROM (0) TO (100)

 PARTITION BY RANGE(a)

(

 PARTITION f_prt_com5_p1_1 (CONSTRAINT con_f_prt_com5_p1_1 CHECK (a != 9))

 FOR VALUES FROM (0) TO (10),

 PARTITION f_prt_com5_p1_2 FOR VALUES FROM (10) TO (20),

 PARTITION f_prt_com5_p1_3 (CONSTRAINT con_f_prt_com5_p1_3 CHECK (a != 90))

 DEFAULT

),

 PARTITION f_prt_com5_p2 FOR VALUES FROM (100) TO (200)

 PARTITION BY LIST(b)

 (

 PARTITION f_prt_com5_p2_1 (UNIQUE(a)) FOR VALUES IN (1,3,5,7),

 PARTITION f_prt_com5_p2_2 (UNIQUE(b)) FOR VALUES IN (2,4,6,8),

 PARTITION f_prt_com5_p2_3 (UNIQUE(c)) DEFAULT

),

 PARTITION f_prt_com5_p3 DEFAULT

 PARTITION BY HASH(c)

 (

https://www.tutorialspoint.com/postgresql/postgresql_constraints.htm

 PARTITION f_prt_com5_p3_1 (CONSTRAINT PK_f_prt_com5_p3_1 PRIMARY KEY(a))

 FOR VALUES WITH (MODULUS 3, REMAINDER 0),

 PARTITION f_prt_com5_p3_2 (CONSTRAINT FK_f_prt_com5_p3_2 FOREIGN KEY(a)

 REFERENCES f_prt_com5_p2_2(b)) FOR VALUES WITH(MODULUS 3, REMAINDER 1),

 PARTITION f_prt_com5_p3_3 FOR VALUES WITH (MODULUS 3, REMAINDER 2)

)

);

CREATE TABLE

4 Shard Management

4.1 Overview

Sharding is an act of partitioning a table over multiple database server instances in a distributed
database environment whereas partitioning refers to dividing a table on the same database server.
Sharding is also known as horizontal partition as it partitions the data horizontally based on a sharded
key. This is analogous to how a table is partitioned using a partition key. In case of sharding, the data is
partitioned across multiple instances using the sharded key. A table created on a foreign server is
normally referred to as a “shard” and is normally accessed via a Foreign Data Wrapper (FDW) handler
(ex. postgres_fdw extension) from the local database server.

HG-PGSQL introduces a new optional clause WITH PUSHDOWN that can be used in the creation of foreign
partition tables. The clause provides an ability to automatically create foreign partition table on the
foreign servers instead of having the user to do it manually. In standard PostgreSQL server, on contrary,
the user needs to manually create the partition table on the foreign server as well as on the local one.

In addition to the new WITH PUSHDOWN clause, HG-PGSQL includes another optional clause INCLUDE
REMOTE that can be used with the existing DROP FOREIGN TABLE clause to automatically drop the tables
in the foreign servers instead of having the user to drop it manually. In standard PostgreSQL server, the
user still needs to manually drop the partitioned tables on the foreign server as well as on the local one.

This feature is built in postgres_fdw extension in HG-PGSQL and can be extended to other FDWs. This is
a useful feature designed to automate the creation and deletion of sharded tables.

4.2 Syntax and Placement of WITH PUSHDOWN Clause

WITH PUSHDOWN is an optional clause that can be added at the end of an existing CREATE FOREIGN TABLE
SQL statement to trigger the automatic table creation on foreign servers. This clause can be used
together with the creation of foreign tables and partitions and cannot be used with ALTER, UPDATE, DROP
or INSERT clauses. The following sections outline different use cases for the WITH PUSHDOWN.

4.2.1 Foreign Table Creation

Consider this general rule below when using WITH PUSHDOWN in the end of foreign table creation

CREATE FOREIGN TABLE

 IF NOT EXISTS table_name (column_name TYPE) SERVER server_name

 OPTIONS (options) WITH PUSHDOWN;

Please note that WITH PUSHDOWN must be placed towards the end of the
statement; it cannot be placed before OPTIONS or before SERVER. Syntax
error will be given if it is placed elsewhere.

The server object defined by SERVER server_name needs to be created with
postgres_fdw extension prior to running the statement. Detailed
explanation is in the next section.

4.2.2 Foreign Partition Table Creation using Enhance Partition Syntax

 WITH PUSHDOWN can be used in partition table creation using the enhanced partition creation syntax
defined in section 3. Consider the general rule below that incorporates WITH PUSHDOWN clause in
partition by RANGE using the enhanced partition creation syntax. Same syntax rule applies to other
partition types such as LIST and HASH.

/* Partition by Range with PUSHDOWN */

/* Same syntax rule applies to partition by List and Hash */

$ CREATE TABLE table_name (column_name TYPE) PARTITION BY RANGE (column_name)

 (

 PARTITION partition_name_1 FOR VALUES FROM (lower_bound) TO (upper_bound)

 SERVER server_name WITH PUSHDOWN,

 PARTITION partition_name_2 FOR VALUES FROM (lower_bound) TO (upper_bound)

 SERVER server_name WITH PUSHDOWN,

 PARTITION partition_name_3 DEFAULT

 SERVER server_name WITH PUSHDOWN

 /* more partition definitions follow ...*/

);

4.2.3 Foreign Sub-Partition Creation using Enhanced Partition Syntax

WITH PUSHDOWN can be used in sub-partition creation using the enhance partition creation syntax
defined in section 3. Consider the general rule below that defines and automatically creates 3 sub-
partitions on foreign server. Same syntax rule applies to other sub-partition types such as LIST and HASH.

/* Sub Partition Creation with PUSHDOWN

$ CREATE TABLE table_name (column_name TYPE) PARTITION BY RANGE (column_name)

 (

 PARTITION partition_name_1 FOR VALUES FROM (lower_bound) TO (upper_bound)

 PARTITION BY RANGE(column_name)

 (

 /* Sub-Partition by RANGE */
 PARTITION sub_partition_name_1 FOR VALUES FROM (lower_bound) TO

 (upper_bound) SERVER server_name WITH PUSHDOWN,

 PARTITION sub_partition_name_2 FOR VALUES FROM (lower_bound) TO

 (upper_bound) SERVER server_name WITH PUSHDOWN,

 PARTITION sub_partition_name_3 SERVER server_name WITH PUSHDOWN

 /* more sub partition definitions follow ...*/

)

 /* more partition definitions follow ...*/

);

If sub-partitions are defined, the parent partition cannot be made foreign
and therefore WITH PUSHDOWN clause cannot be used on the parent
partition. This is the expected behavior.

4.3 Syntax and Placement of INCLUDE REMOTE Clause

INCLUDE REMOTE is an optional clause that can be added at the end of an existing DROP TABLE or DROP
FOREIGN TABLE SQL statement to trigger the automatic table deletion on foreign servers. This clause can
be used to drop both local and foreign tables and cannot be used with ALTER, UPDATE, CREATE or
INSERT clauses. The following sections outline different use cases for the INCLUDE REMOTE.

4.3.1 Foreign Table Deletion

Consider this general rule below when using INCLUDE REMOTE in the end of DROP FOREIGN TABLE;

DROP FOREIGN TABLE IF EXISTS table_name INCLUDE REMOTE;

This general command will drop the table named table_name in both local and the foreign server.

4.3.2 Foreign Partition Table Deletion

To automatically drop the local and foreign partition tables, the user can follow the general rule below:

DROP TABLE table_name INCLUDE REMOTE;

This will drop the local table, named table_name, along with all the partition tables created on the local
and foreign servers. A list of foreign partition table and foreign server names and will be printed as
NOTICE as the query executes.

If the user creates a table containing foreign sub-partitions, the same rule can be used to drop the table
and all the sub-partitions created on foreign servers

4.3.3 Foreign Table Deletion with CASCADE clause

Similar to the standard PostgreSQL syntax rule, an error will be returned if the user attempts to drop
foreign or local tables that have dependencies from other tables, such as views. To resolve this error,
the user can manually drop the dependent tables first or simply include the CASCADE clause in the query
statement to automatically drop the table and its dependencies. CASCADE clause can also work with the
INCLUDE REMOTE clause according to this general rule below:

DROP TABLE table_name CASCADE INCLUDE REMOTE;

This will drop all the dependency tables on both local and foreign server related to table_name, before
dropping table_name and its associated partitions or sub-partitions on local and foreign servers.

Please note that when “CASCADE” must be placed before “INCLUDE
REMOTE” and after table_name. Syntax error will return if placed
elsewhere.

4.4 Create Foreign Server Objects on Local Database Server

Before we can use the new WITH PUSHDOWN clause to create foreign tables automatically, we need to
define server objects on the local database that represent the foreign servers. The server object creation
follows the standard PostgreSQL syntax and more details can be found here:

https://www.postgresql.org/docs/12/postgres-fdw.html

As examples, we will define 2 server objects, S1 and S2, to represent 2 foreign servers in which we will
refer to them throughout the rest of this section. As an example, both foreign servers and local server
have super user named ‘highgo’ and database named ‘postgres’.

The procedure to create server objects can be broken down into the following steps:

• Install the postgres_fdw extension using CREATE EXTENSION. Please note that you must have
installed the hg-pgsql12-contrib package to get access to postgres_fdw extension. Please refer
to the detailed installation guide if it has not been installed.

$ CREATE EXTENSION postgres_fdw;

CREATE EXTENSION

• Next, we will create the server objects S1 and S2 to represent 2 foreign servers

$ CREATE SERVER S1 FOREIGN DATA WRAPPER postgres_fdw OPTIONS

(

dbname ‘postgres’,

host ‘172.17.0.3’,

port ‘5333’

);

CREATE SERVER

$ CREATE SERVER S2 FOREIGN DATA WRAPPER postgres_fdw OPTIONS

(

dbname ‘postgres’,

host ‘172.17.0.4’,

port ‘5333’

);

CREATE SERVER

• Then, we will create user mappings that map local super user ‘highgo’ to remote super user
‘highgo’ for both server objects.

$ CREATE USER MAPPING FOR highgo SERVER S1 OPTIONS (user ‘highgo’);

CREATE USER MAPPING

$ CREATE USER MAPPING FOR highgo SERVER S2 OPTIONS (user ‘highgo’);

CREATE USER MAPPING

• Finally, the server objects, S1 and S2, are ready to be used and we will be using them in the
coming sections to illustrate the convenience of WITH PUSHDOWN clause.

https://www.postgresql.org/docs/12/postgres-fdw.html

4.5 Automatic Foreign Table Creation and Deletion Example

Having the server objects created in the previous section, we can then create a foreign table at server
object S1.
'
$ CREATE FOREIGN TABLE

 IF NOT EXISTS tf1_f (i INT, j VARCHAR) SERVER S1

 OPTIONS (schema_name 'public', table_name 'tf1_data');

CREATE FOREIGN TABLE

The statement above only creates a foreign table representation on the local database server and this
table does not yet exist in the foreign server S1. We will get an error if we attempt to operate data
against this foreign table.

To automatically create the foreign table on the foreign database server represented by S1, use the
syntax as following:

$ CREATE FOREIGN TABLE

 IF NOT EXISTS tf1_f (i INT, j VARCHAR) SERVER S1

OPTIONS (schema_name 'public', table_name 'tf1_data')

WITH PUSHDOWN;

CREATE FOREIGN TABLE

WITH PUSHDOWN clause is optional and when added at the end of statement, the foreign table tf1_f will
be created at the local server and the table tf1_data will be created automatically on the foreign server.
Please note that the above example uses the OPTION (table_name ‘tf1_data’) to illustrate that we
can have different table names existing in both local and foreign servers. In this case, the data inserted
to tf1_f table on local server will be available at tf1_data table in the foreign server.

To drop the foreign table created in the previous example:

$ DROP FOREIGN TABLE tf1_f INCLUDE REMOTE;

NOTICE: Drop remote table ‘public.tf1_data’ on foreign server ‘S1’

DROP FOREIGN TABLE

Note that a line of NOTICE will print the name of the relation to be dropped and indicate the residing
foreign server object.

Based on the same example, if the user later creates a VIEW on the foreign table named view1, which
depends on table tf1_f, the previous DROP FOREIGN TABLE command will fail due to dependency. In this
case, we will use the CASCADE clause to automatically drop the dependencies and the table.

$ DROP FOREIGN TABLE tf1_f CASCADE INCLUDE REMOTE;

NOTICE: Drop remote table 'public.tf1_data' on foreign server 'S1'

NOTICE: drop cascades to view public.view1

DROP FOREIGN TABLE

Note that another NOTICE will be printed to show the dependency that has been dropped as the result
of CASCADE clause.

4.6 Automatic Foreign Partition Table Creation and Deletion Example

The WITH PUSHDOWN clause can also be used with the new partition creation syntax described in section
3. Consider the following 2 examples, one using WITH PUSHDOWN clause while the other does not.

$ CREATE TABLE prt_com1_f (a INT) PARTITION BY RANGE (a)

 (

 PARTITION prt_com1_p1_f FOR VALUES FROM (1) TO (10) SERVER S1,

 PARTITION prt_com1_p2_f FOR VALUES FROM (10) TO (20) SERVER S2,

 PARTITION prt_com1_p3 DEFAULT

);

CREATE TABLE

The example above creates 3 partitions tables in which prt_com1_p1_f and prt_com1_p2_f are declared
as foreign tables referencing to server objects S1 and S2. These two foreign tables are created in the
local database server only and they do not exist yet in serves S1 and S2.

Consider the same example with “WITH PUSHDOWN” clause added at the end of partition declaration.

$ CREATE TABLE prt_com1_f (a INT) PARTITION BY RANGE (a)

 (

 PARTITION prt_com1_p1_f FOR VALUES FROM (1) TO (10) SERVER S1 WITH PUSHDOWN,

 PARTITION prt_com1_p2_f FOR VALUES FROM (10) TO (20) SERVER S2 WITH PUSHDOWN,

 PARTITION prt_com1_p3 DEFAULT

);

CREATE TABLE

The above statement will not only create prt_com1_p1_f and prt_com1_p2_f in the local database but
also in their corresponding foreign servers S1 and S2. This eliminates the need to manually create the
same tables on the foreign servers.

To drop the foreign partition table created in the previous example:

$ DROP TABLE prt_com1_f INCLUDE REMOTE;

NOTICE: Drop remote table 'public.prt_com1_p2_f' on foreign server 'S2'

NOTICE: Drop remote table 'public.prt_com1_p1_f' on foreign server 'S1'

DROP TABLE

This SQL statement will drop the local table and partitions as well as the partition table prt_com1_p2_f
and prt_com1_p2_f on the foreign servers automatically.

Based on the same example, if the user later creates a VIEW on the foreign table named view1 on S1
and view2 on S2 that depends on table prt_com1_p2_f and prt_com1_p2_f respectively, the previous
DROP TABLE command will fail due to dependency. In this case, we will use the CASCADE clause to
automatically drop the dependencies and partitioned tables on foreign servers.

$ DROP TABLE prt_com1_f CASCADE INCLUDE REMOTE;

NOTICE: Drop remote table 'public.prt_com1_p2_f' on foreign server 'S2'

NOTICE: drop cascades to view public.view2

NOTICE: Drop remote table 'public.prt_com1_p1_f' on foreign server 'S1'

NOTICE: drop cascades to view public.view1

DROP TABLE

4.7 Automatic Foreign Sub-Partition Table Creation and Deletion Example

Consider the following 2 examples of creating foreign sub partitions with and without WITH PUSHDOWN
clause.

$ CREATE TABLE prt_com4(a INT, b INT, c INT)

PARTITION BY RANGE(a)

(

 PARTITION prt_com4_p1 FOR VALUES FROM (0) TO (100)

 PARTITION BY RANGE(a)

 (

 PARTITION prt_com4_p1_1 FOR VALUES FROM (0) TO (10) SERVER S1,

 PARTITION prt_com4_p1_2 FOR VALUES FROM (10) TO (20) SERVER S2,

 PARTITION prt_com4_p1_3 DEFAULT

)

);

CREATE TABLE

The example above creates 3 partitions tables in which prt_com4_p1_1 and prt_com4_p1_2 are
declared as foreign tables referencing to server objects S1 and S2. These two foreign tables are created
in the local database server only and they do not exist yet in serves S1 and S2.

Consider the same example with WITH PUSHDOWN clause added at the end of sub-partition declaration.

$ CREATE TABLE prt_com4(a INT, b INT, c INT)

PARTITION BY RANGE(a)

(

 PARTITION prt_com4_p1 FOR VALUES FROM (0) TO (100)

 PARTITION BY RANGE(a)

 (

 PARTITION prt_com4_p1_1 FOR VALUES FROM (0) TO (10) SERVER S1

 WITH PUSHDOWN,

 PARTITION prt_com4_p1_2 FOR VALUES FROM (10) TO (20) SERVER S2

 WITH PUSHDOWN,

 PARTITION prt_com4_p1_3 DEFAULT

)

);

CREATE TABLE

The above statement will not only create prt_com4_p1_1 and prt_com4_p2_2 in the local database but
also in their corresponding foreign servers S1 and S2. This eliminates the need to manually create the
same tables on the foreign servers.

To drop the foreign sub-partition tables created in the previous example:

$ DROP TABLE prt_com4 INCLUDE REMOTE;

NOTICE: Drop remote table 'public.prt_com4_p1_2' on foreign server 'S2'

NOTICE: Drop remote table 'public.prt_com4_p1_1' on foreign server 'S1'

DROP TABLE

if the user later creates a VIEW on the foreign table named view1 on S1 and view2 on S2, which
depend on prt_com4_p1_1 and prt_com4_p2_2, the previous DROP TABLE command will fail due to
dependency. In this case, we will use the CASCADE clause to automatically drop the dependencies on and
sub-partitioned tables on foreign servers.

$ DROP TABLE prt_com4 CASCADE INCLUDE REMOTE;

NOTICE: Drop remote table 'public.prt_com4_p1_2' on foreign server 'S2'

NOTICE: drop cascades to view public.view2

NOTICE: Drop remote table 'public.prt_com4_p1_1' on foreign server 'S1'

NOTICE: drop cascades to view public.view1

DROP TABLE

4.8 Common Misuse and Misinterpretation

4.8.1 Table and Partition Constraints are not Affected by ‘WITH PUSHDOWN’

Consider the SQL statement below that creates a foreign partition with a constraint:

$ CREATE TABLE prt_com1_f (a INT) PARTITION BY RANGE (a)

 (

 PARTITION prt_com1_p1_f (CONSTRAINT con_prt_com1_p1 CHECK (a != 19)) FOR

 VALUES FROM (1) TO (10) SERVER S1 WITH PUSHDOWN,

 PARTITION prt_com1_p2_f FOR VALUES FROM (10) TO (20) SERVER S2 WITH PUSHDOWN,

 PARTITION prt_com1_p3 DEFAULT

);

CREATE TABLE

The constraint defined will only exist in the local database server and not
propagated to the foreign server with the “WITH PUSHDOWN” clause. This
is intended behavior and the user will be required to manually add the
constraint to foreign server.

4.8.2 ‘WITH PUSHDOWN’ cannot be Used on Temporary Tables

Consider the SQL statement below that attempts to perform “WITH PUSHDOWN” on a temporary table.

CREATE TEMP TABLE prt_com5(a INT, b INT, c INT) PARTITION BY RANGE(a)

(

PARTITION prt_com5_p1 FOR VALUES FROM (0) TO (100)

 PARTITION BY RANGE(a)

 (

 PARTITION prt_com5_p1_1 FOR VALUES FROM (0) TO (10) SERVER S1

 WITH PUSHDOWN

)

);

ERROR: WITH PUSHDOWN is only allowed for permanent relations

“WITH PUSHDOWN” cannot be applied to a table declared as “TEMP”, an
error will be given if the pushdown is attempted on temporary table.

4.8.3 ‘WITH PUSHDOWN’ Returns Error if Foreign Table Exists Already

Consider the example below where we attempt to create partitions as foreign tables using WITH
PUSHDOWN clause twice in a row with a regular DROP TABLE clause in between. First attempt will succeed,
the second will fail because WITH PUSHDOWN clause will not create a table if it exists already.

$ CREATE TABLE prt_com1_f (a INT) PARTITION BY RANGE (a)

 (

 PARTITION prt_com1_p1_f FOR VALUES FROM (1) TO (10) SERVER S1 WITH PUSHDOWN,

 PARTITION prt_com1_p2_f FOR VALUES FROM (10) TO (20) SERVER S2 WITH PUSHDOWN

);

CREATE TABLE

/* this will drop the local tables, not foreign */

$ DROP TABLE prt_com1_f;

DROP TABLE

$ CREATE TABLE prt_com1_f (a INT) PARTITION BY RANGE (a)

 (

 PARTITION prt_com1_p1_f FOR VALUES FROM (1) TO (10) SERVER S1 WITH PUSHDOWN,

 PARTITION prt_com1_p2_f FOR VALUES FROM (10) TO (20) SERVER S2 WITH PUSHDOWN

);

ERROR: Failed to execute CREATE TABLE on remote server

“WITH PUSHDOWN” will NOT overwrite the remote tables having the same
relation names.

4.8.4 The Parent Partition and Sub-Partition Tables cannot be Foreign at the Same Time

Consider the SQL statement below that attempts to make both the parent and sub partitions foreign at
the same time. Doing so will result in error message being given due to incorrect usage. The clauses
causing the error are highlighted in below example.

$ CREATE TABLE prt_com4(a int, b int, c int) PARTITION BY RANGE(a)

(

 PARTITION prt_com4_p1 FOR VALUES FROM (0) TO (100) SERVER S1

 PARTITION BY RANGE(a)

 (

 PARTITION prt_com4_p1_1 FOR VALUES FROM (0) TO (10) SERVER s1,

 PARTITION prt_com4_p1_2 FOR VALUES FROM (10) TO (20) SERVER s2,

 PARTITION prt_com4_p1_3 DEFAULT

),

 PARTITION prt_com4_p2 FOR VALUES FROM (100) TO (200) SERVER S2

 PARTITION BY LIST(b)

 (

 PARTITION prt_com4_p2_1 FOR VALUES IN (1,2,3,4) SERVER s1,

 PARTITION prt_com4_p2_2 FOR VALUES IN (5,6,7,8) SERVER s2,

 PARTITION prt_com4_p2_3 DEFAULT

),

 PARTITION prt_com4_p3 DEFAULT SERVER S1

 PARTITION BY HASH(c)

 (

 PARTITION prt_com4_p3_1 FOR VALUES WITH(MODULUS 3, REMAINDER 0),

 PARTITION prt_com4_p3_2 FOR VALUES WITH(MODULUS 3, REMAINDER 1),

 PARTITION prt_com4_p3_3 FOR VALUES WITH(MODULUS 3, REMAINDER 2)

)

);

ERROR: Partition table can not be a foreign table

Please note that only the partitions that do not have any children sub-
partitions can be created as ‘foreign’. In other words, only the partitions at
the end of the partition hierarchy tree can be made ‘foreign’; their parent
partitions cannot be made as ‘foreign’.

5 Parallel Backup

Full base backup refers to an act of making an identical copy of the database cluster files and is normally
performed by the front end tool pg_basebackup, which will always make a copy of the entire database
cluster. This tool works in single thread mode and its process of taking a full backup of a large database
can take a very long time and potentially slow down the online database operations.

HG-PGSQL introduces parallel backup feature that is built within pg_basebackup front end tool and user
can specify the number of worker threads as command line arguments. This allows pg_basebackup tool
to spawn multiple parallel workers that help spread the total work load; each worker can perform full
base backup on a portion of the target database cluster in parallel and therefore utilizing the system
resources more efficiently and reducing the time required.

The desired number of worker threads depends on the size of the target database, the disk`s IO
performance and the maximum thread limits settings on unix-based systems. The user should carefully
evaluate the system and select an appropriate number of workers such that the backup process is
optimized with minimal impact to other system operations in terms of resource usages.

Our team at HighGo has simulated a typical real-world database setup and done several benchmarking
tests on parallel backup performance. The benchmark shows the backup performance with respect to
the number of parallel workers executed on systems having high Input Output Processor (IOP) rating.

The white paper of HighGo’s benchmark tests can be found at

https://www.highgo.ca/products/highgo-postgresql-server

5.1 Authentication and Connection Limit Configuration

The front-end tool pg_basebackup performs the backup based on replication protocol supported in
standard PostgreSQL distribution. Therefore, some initial setup must be done for the backup to execute
properly.

5.1.1 Set Proper max_wal_sender Parameter

The maximum number of parallel worker that pg_basebackup can efficiently spawn depends on the
max_wal_sender configuration parameter in the target database server. HG-PGSQL defaults this
value to 10 and it can be changed by modifying postgresql.conf. See the snapshot below

#---

REPLICATION

#---

- Sending Servers –

Set these on the master and on any standby that will send replication data.

#max_wal_senders = 10 # max number of walsender processes

 # (change requires restart)

https://www.highgo.ca/

If pg_basebackup attempts to spawn more parallel workers than the
maximum number that server can accept, the excessive parallel workers
will get a connection failure. However, the backup process will continue to
perform by the workers that have obtained a replication connection from
the target server

5.1.2 Set Proper Replication Connection Permission

Before pg_basebackup can connect successfully to a server to perform full base backup, the server must
have allowed such connections first in pg_hba.conf. For example, if a user plans to run pg_basebackup
as database user highgo from a host having IP = 172.17.0.2. The Server must have an entry added in
pg_hba.conf that allows this connection. See snapshot of pg_hba.conf below.

Allow replication connections from localhost, by a user with the

replication privilege.

local replication all peer

host replication all 127.0.0.1/32 ident

host replication highgo 172.17.0.2/32 trust

host replication all ::1/128 ident

If pg_basebackup attempts to connect to a database server in which it
does not have replication permission configured, authentication failure will
be returned and full base backup will abort.

5.2 Parallel Backup Usages

A new command line option (-j | --jobs=NUM) is added to pg_basebackup front end tool that

accepts a positive integer larger than 0 denoting the number of parallel worker threads that it should
spawn to process the full base backup operation. This is an optional argument that can be used in
combination with other existing arguments to ensure a successful backup operation.

Some of the most commonly used pg_basebackup commands including the new argument are listed
below. Please note that if destination hostname and port number are not specified, the tool will use the
values defined in environment variables, PGHOST and PGPORT. If database user is not specified, the
current system user will be assumed to be database user. Please also note that the following examples
will perform backup to $BACKUP_DIR, and this directory must be clean before backup is attempted,
otherwise the tool will refuse to do backup. For more information on the usage, use --help argument
to see all supported arguments and their usages.

• Spawn 4 parallel workers to perform base backup to $BACKUP_DIR

$ pg_basebackup -j 4 -D $BACKUP_DIR

• Spawn 10 parallel workers to perform base backup to $BACKUP_DIR in verbose mode

$ pg_basebackup --jobs=10 -D $BACKUP_DIR -v

• Use single thread mode to perform base backup to $BACKUP_DIR

$ pg_basebackup -D $BACKUP_DIR

• Spawn 4 parallel workers to perform base backup to $BACKUP_DIR and re-map table space ts1
and ts2 to a new location $BACKUP_DIR1 and $BACKUP_DIR2 while skipping checksum
verification.

$ pg_basebackup -j 4 -D $BACKUP_DIR \

 -T /home/highgo/test/ts1=$BACKUP_DIR1/new_tablespace/ \

 -T /home/highgo/test/ts2=$BACKUP_DIR2/new_tablespace/ \

 --no-verify-checksums

• Spawn 4 parallel workers to perform base backup to $BACKUP_DIR and show progress
information

$ pg_basebackup -D $BACKUP_DIR -P -j 4

• Create a replication slot named backup and spawn 10 parallel workers to connect to this slot to
perform base backup to $BACKUP_DIR while showing progress information.

$ pg_basebackup -D $BACKUP_DIR -j 10 -S backup -C -P

• Spawn 4 parallel workers to perform base backup to $BACKUP_DIR and populate a
postgres.auto.conf containing the primary_conninfo and primary_slot_name to connect to
the main DB server as standby. This option is normally used when a user would like to setup the
base backup as a standby server.

$ pg_basebackup -D $BACKUP_DIR -j 4 -S backup -C -R

Copyright © 2019 Highgo Software, Inc. All rights reserved. HighGo Postgres Server®, HighGo DB®, HighGo DW®, HG Backup®, HData® and
certain other marks are registered trademarks of Highgo Software, Inc., in Canada and other jurisdictions, and other HighGo names herein may
also be registered and/or common law trademarks of HighGo. All other product or company names may be trademarks of their respective owners.
Performance and other metrics contained herein or published on HighGo website were attained in internal lab tests under ideal conditions, and
actual performance and other results may vary. Network variables, disk IOs and other conditions may affect performance results. Nothing herein
represents any binding commitment by HighGo, and HighGo disclaims all warranties, whether express or implied, except to the extent HighGo
enters a binding written contract, signed by HighGo`s General Counsel, with a purchaser that expressly warrants that the identified product will
perform according to certain expressly-identified performance metrics and, in such event, only the specific performance metrics expressly
identified in such binding written contract shall be binding on HighGo. For absolute clarity, any such warranty will be limited to performance in the
same ideal conditions as in HighGo`s internal lab tests. In no event does HighGo make any commitment related to future deliverables, features or
development, and circumstances may change such that any forward-looking statements herein are not accurate. HighGo disclaims in full any
covenants, representations, and guarantees pursuant hereto, whether express or implied. HighGo reserves the right to change, modify, transfer,
or otherwise revise this publication without notice, and the most current version of the publication shall be applicable.

